Time: 60 minutes Summer 2007 Chemistry 201 Quiz 1 **July 18, 2007** *R. Sultan*

Name :	KEY	Major :	
Student Number		Signature :	

Useful Information

Planck's constant $h = 6.626 \times 10^{-34} \text{ J s}$

Speed of light $c = 2.998 \times 10^8 \text{ m s}^{-1}$

Constant for the Bohr energy levels $C = 2.18 \times 10^{-18} \text{ J (Rydberg's constant)}$

 $1 \text{nm} = 10^{-9} \text{ m}$

Mass of electron $m_e\text{=}9.109\times10^{-31}~kg$

There are 20 questions. In each question, only ONE of the proposed answers is right. Circle the letter corresponding to the right answer.

- A. linear.
- B. trigonal planar.
- C. tetrahedral.
- D. bent.
- (E.) trigonal pyramidal.

Which element has the following electron configuration?

- A. Sn
- B Sb
- C. Pb
- D. Bi
- E. Te

• Which of the following is the electron configuration of the Fe³⁺ ion?

- (A.) [Ar]3d5
- B. [Ar]4s1 3d5
- C. [Ar]4s² 3d³
- D. [Ar]3d6
- E. [Ar]4s2 3d9

Which one of the following molecules has a dipole moment?

- A. BeCl₂
- B. Br₂
- C. BF₃
- \bigcirc SO₂
- E. CO₂

$$\ddot{0} = C = \ddot{0}$$

- Calculate the wavelength of a neutron that has a velocity of 200 cm/s. The mass of a neutron = 1.675×10^{-27} kg.
 - A. 1.98×10^{-9} m
 - B. 216 nm
 - C. 1.8×10^{50} m
 - D.) 198 nm
 - E. 5.05 mm

- $\lambda = \frac{k}{2000}$ $= \frac{6.626 \times 10^{-34}}{1.675 \times 10^{-27} \times 200 \times 10^{-2}}$ = 1.98×10-7 m = [198 mm
- What is the energy in joules of a mole of photons associated with red light of wavelength $7.00 \times 10^{2} \text{ nm}$?
 - A. 256 kJ
 - (B) $1.71 \times 10^5 \text{ J}$
 - $C. 4.72 \times 10^{-43} J$
 - D. 12.4 kJ
 - E. $2.12 \times 10^{42} \text{ J}$
- E = NA E = hy = h = NA $= 6.626 \times 10^{-34} \times 2.998 \times 10^{8}$ $= 1.71 \times 10^{5} \text{ J}$
- What is <u>not</u> common between the Lewis structures of NO₃⁻, CO₃²⁻ and SO₃?
 - A. They are all isoelectronic. V (valence)
 - B. They all have three resonance contributing structures. V
 - C.) Their resonance structures are not equivalent. No. they eve!
 - D. When considered from the viewpoint of VSEPR theory, they are yield trigonal planar 🗸 molecules.
 - E. For each molecule, each resonance structure has two single bonds and one double bond.
- In which one of the following molecules is the central atom sp2 hybridized?

- N20: 5x2+6=16-4=12

- 503 € 24 valence
 - came idea ...

- Which one of the following elements is a transition element?
 - A. Sr
 - B. Pb
 - C. As
- → D Hg E. H
 - Which one of the following molecules is nonpolar?
 - A. NH₃
 - B. OF₂
 - C. CH₃Cl
 - D. H₂O
 - $(E)N_3^-$

$$N_3$$
 $5 \times 3 + 1 = \frac{16}{4}$

• A possible set of quantum numbers for the last electron added to complete an atom of germanium (Ge) in its ground state is

n
$$l$$
 m_l m_s last e^- is in 4 p A. 4 0 0 + 1/2 B. 3 0 +1 -1/2 D. 3 1 +1 -1/2 E. 4 2 +2 -1/2 Not possible (d e^-)

- Consider an element with the following electron configuration: [Xe]6s²4f⁷. What is this element?
 - A. Sm
 - B Eu
 - C. Gd
 - D. Am
 - E. Cm

Which one is a correct Lewis structure for ozone, O₃?

- :Ö-Ö=Ö:

- Which one of the following compounds does not follow the octet/duet rule? Hint: Consider the BEST Lewis structure in each case.
 - A. NF₃
 - B. SiF4
 - C.) POCl₃
 - D. AsH₃
 - E. HCl

- POCl3: 5+6+21=32 es
- The maximum number of electrons in a atom that have the following set of quantum numbers is:
 - l = +3 $m_l = -2$ $m_s = +1/2$
 - A. 0

 - C. 2
 - D. 6
 - E. 10
- Which choice lists two elements with electron configurations that are well-known exceptions to the Aufbau principle?
 - A. Cu and C
 - (B.) Mo and Ag
- Mo: 55' 4d Ag: 55' 4d10
- C. Cs and Cl
- D. Rb and Co
- E. Fe and Co

Calculate the wavelength, in nanometers, of the light emitted by a hydrogen atom when its electron falls from the n = 7 to the n = 4 principal energy level. Recall that the energy levels of the H atom are given by: $\Delta E = R_H \left(\frac{1}{46} - \frac{1}{49} \right) = \frac{hc}{\lambda}$ = 2.18×10⁻¹⁸(0.0421) = $\frac{hc}{\lambda}$

$$E_n = -2.18 \times 10^{-18} \text{ J } (1/\text{n}^2)$$

A.
$$4.45 \times 10^{-20}$$
 nm

B.
$$2.17 \times 10^{-6} \text{ nm}$$

C.
$$9.18 \times 10^{-20}$$
 nm

(E.)
$$2.17 \times 10^3 \text{ nm}$$

$$\Delta = 2.16 \times 10^{-6} \text{ m}$$

$$= 2.16 \times 10^{3} \text{ nm}$$

What is the hybridization of As in the AsF₄ ion

The work function for potassium (K) is 2.25 eV. Calculate the kinetic energy of the ejected electron when a photon of wavelength 490 nm hits the surface of a potassium metal sheet.

$$E = hy = h = 4.05 \times 10^{-19} J$$

= 2.53 eV

$$E = h v_0 + K.E$$

$$\psi \qquad k.E = E - \psi$$

$$\psi \qquad = 2.53 - 2.25$$

$$\psi \qquad = 0.28 \text{ eV}$$

The Lewis structure for a chlorate ion, ClO₃, should show ____ single bond(s), ___ double bond(s), and ____ lone pair(s).

B.
$$3, 0, 9$$

$$(20)_{3}^{2}: 7+18+1 = \frac{26}{20}$$

$$[0]_{10}^{2}: 0 - 0]_{10}^{2}$$

$$[0]_{10}^{2}: 0]_{10}^{2}$$